The Plasma Membrane-Localized Sucrose Transporter IbSWEET10 Contributes to the Resistance of Sweet Potato to Fusarium oxysporum
نویسندگان
چکیده
SWEET (Sugars Will Eventually be Exported Transporter) proteins, a novel family of sugar transporters, mediate the diffusion of sugars across cell membranes and acts as key players in sucrose phloem loading. Manipulation of SWEET genes in plants leads to various effects on resistance to biotic and abiotic stresses due to disruption of sugar efflux and changes in sugar distribution. In this study, a member of the SWEET gene family, IbSWEET10, was cloned from the sweet potato line ND98. mRNA expression analysis in sweet potato and promoter β-Glucuronidase analysis in Arabidopsis showed that IbSWEET10 is highly expressed in leaves, especially in vascular tissue. Transient expression in tobacco epidermal cells revealed plasma membrane localization of IbSWEET10, and heterologous expression assays in yeast indicated that IbSWEET10 encodes a sucrose transporter. The expression level of IbSWEET10 was significantly up-regulated in sweet potato infected with Fusarium oxysporum Schlecht. f. sp. batatas. Further characterization revealed IbSWEET10-overexpressing sweet potato lines to be more resistant to F. oxysporum, exhibiting better growth after infection compared with the control; conversely, RNA interference (RNAi) lines showed the opposite results. Additionally, the sugar content of IbSWEET10-overexpression sweet potato was significantly reduced, whereas that in RNAi plants was significantly increased compared with the control. Therefore, we suggest that the reduction in sugar content caused by IbSWEET10 overexpression is the major reason for the enhanced F. oxysporum resistance of the transgenic plants. This is the first report that the IbSWEET10 transporter contributes to the resistance of sweet potato to F. oxysporum. The IbSWEET10 gene has the great potential to be used for improving the resistance to F. oxysporum in sweet potato and other plants.
منابع مشابه
Mapping and Expression Analysis of a Fusarium Head Blight Resistance Gene Candidate Pleiotropic Drug Resistance 5 (PDR5) in Wheat
Fusarium head blight (FHB) caused by Fusarium graminearum is a serious disease of wheat (Triticum aestivum L.), through which grain quality losses are induced by fungal trichotecene mycotoxins such as deoxynivalenol (DON). A class of plasma membrane localized ABC transporter proteins related to the yeast PDR5 (pleiotropic drug resistance5) efflux pump seems to be responsible for partial resista...
متن کاملTranscriptome profiling and digital gene expression analysis of sweet potato for the identification of putative genes involved in the defense response against Fusarium oxysporum f. sp. batatas
Sweet potato production is constrained by Fusarium wilt, which is caused by Fusarium oxysporum f. sp. batatas (Fob). The identification of genes related to disease resistance and the underlying mechanisms will contribute to improving disease resistance via sweet potato breeding programs. In the present study, we performed de novo transcriptome assembly and digital gene expression (DGE) profilin...
متن کاملStrain of Fusarium oxysporum isolated from almond hulls produces styrene and 7-methyl-1,3,5-cyclooctatriene as the principal volatile components.
An isolated strain of Fusarium oxysporum from the hulls of Prunus dulcis (sweet almond) was found to produce relatively large quantities of the hydrocarbons styrene and two isomers of 7-methyl-1,3,5- cyclooctatriene (MCOT). Production of styrene and MCOT was reproduced on a small scale using potato dextrose agar as a growth medium and scaled up using 1 L of inoculated potato dextrose broth. The...
متن کاملSpatiotemporal Expression and Substrate Specificity Analysis of the Cucumber SWEET Gene Family
The functions of SWEET (Sugar Will Eventually be Exported Transporter) proteins have been studied in a number of crops, but little is known about their roles in cucumber (Cucumis sativus L.), a model plant for studying stachyose metabolism and phloem function. Here, we identified 17 cucumber SWEET genes (CsSWEETs), located on chromosomes 1-6, and classified them into four clades. Two genes from...
متن کاملPotato Sucrose Transporter Expression in Minor Veins lndicates a Role in Phloem Loading
The major transport form of assimilates in most plants is sucrose. Translocation from the mesophyll into the phloem for long-distance transport is assumed to be carrier mediated in many species. A sucrose transporter cDNA was isolated from potato by complementation of a yeast strain that is unable to grow on sucrose because of the absence of an endogenous sucrose uptake -tem and the lack of a s...
متن کامل